An Implementation of a Generalized Lanczos Procedure for Structural Dynamic Analysis on Distributed Memory Computers
نویسندگان
چکیده
This paper describes a parallel implementation of a generalized Lanczos procedure for structural dynamic analysis on a distributed memory parallel computer. One major cost of the generalized Lanczos procedure is the factorization of the (shifted) stiffness matrix and the forward and backward solution of triangular systems. In this paper, we discuss load assignment of a sparse matrix and propose a strategy for inverting the principal block submatrix factors to facilitate the forward and backward solution of triangular systems. We also discuss the different strategies in the implementation of mass matrix-vector multiplication on parallel computer and how they are used in the Lanczos procedure. The Lanczos procedure implemented includes partial and external selective reorthogonalizations and spectral shifts. Experimental results are presented to illustrate the effectiveness of the parallel generalized Lanczos procedure. The issues of balancing the computations among the basic steps of the Lanczos procedure on distributed memory computers are discussed. IThis work is sponsored by the National Science Foundation grant number ECS-9003107, and the Army Research Office grant number DAAL-03-91-G-0038.
منابع مشابه
Efficient Implementation of the Improved Quasi-Minimal Residual Method on Massively Distributed Memory Computers
For the solutions of linear systems of equations with un-symmetric coeecient matrices, we has proposed an improved version of the quasi-minimal residual (IQMR) method by using the Lanczos process as a major component combining elements of numerical stability and parallel algorithm design. For Lanczos process, stability is obtained by a couple two-term procedure that generates Lanczos vectors sc...
متن کاملA Robust and Efficient Parallel SVD Solver Based on Restarted Lanczos Bidiagonalization
Lanczos bidiagonalization is a competitive method for computing a partial singular value decomposition of a large sparse matrix, that is, when only a subset of the singular values and corresponding singular vectors are required. However, a straightforward implementation of the algorithm has the problem of loss of orthogonality between computed Lanczos vectors, and some reorthogonalization techn...
متن کاملEfficient Implementation of the Improved Unsymmetric Lanczos Process on Massively Distributed Memory Computers
For the eigenvalues of a large and sparse unsymmetric co-eecient matrix, we have proposed an improved version of the unsymmetric Lanczos process combining elements of numerical stability and parallel algorithm design. The algorithm is derived such that all inner products and matrix-vector multiplications of a single iteration step are independent and communication time required for inner produc...
متن کاملThe Improved Unsymmetric Lanczos Process on Massively Distributed Memory Computers
|For the eigenvalues of a large and sparse unsym-metric coeecient matrix, we propose an improved version of the unsymmetric Lanczos process combining elements of numerical stability and parallel algorithm design. Stability is obtained by a coupled two-term recurrences procedure that generates Lanczos vectors scaled to unit length. The algorithm is derived such that all inner products and matrix...
متن کاملA Parallel Lanczos Algorithm for Eigensystem Calculation
Eigenvalue problems arise in many fields of physics and engineering science for example in structural engineering from prediction of dynamic stability of structures or vibrations of a fluid in a closed cavity. Their solution consumes a large amount of memory and CPU time if more than very few (1-5) vibrational modes are desired. Both make the problem a natural candidate for parallel processing....
متن کامل